
EXCITATION OF METASTABILE STATES IN GASEOUS NEBULAE

There are two different types of atomic processes which are responsible for the excitation of metasta-
bile states in the gaseous nebulae: the fluorescence phenomenon and the electronic collisions.

The fluorescence phenomenon. We consider an atom which has three stationary levels 1, 2,
3 with the enrgies ε1 < ε2 < ε3. Let n1, n2, n3 be the number of atoms in cubic centimetre in
corresponding levels. The relative values of these numbers in the case of stationary distribution
are determined by radiation field and atomic constants (transition probabilities). The stationarity
conditions are:
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where Bik is Einstein’s probability coefficient corresponding to the transition i → k, gk is the weight
of the k–th level, ρik is the density of radiation in the frequency
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h,c and π have their usual meaning.
Thus the product
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is the Einstein’s probability coefficient of spontaneous transition k → i.
We write the equations (1) to become
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Before solving these equations we make some simplifications, corresponding to the physical conditions
in nebulae. The radiation density ρik may be represented as
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Here T is the surface temperature of the nucleus and the factor W is defined by the relation:
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where r∗ is the radius of the nucleus and rn is the distance of the point of nebula we consider from
the nucleus. If W is a small quantity (W < 10−3) the densities ρik in the brackets of (4) may be
neglected, compared with σik and we have:
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Solving these equations we obtain:
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We suppose that the second level is a metastabile one, i.e. that the quantity B12 is small compared
with B13 and B23. Therefore the members containing the factor B12 ρ12 may be neglected compared
with the term containing B13 ρ13. (8) then becomes:
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Neither the transition 3 → 1, nor the transition 3 → 2 are forbidden. Therefore the quantities
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If on the other hand the second level is not metastabile (ordinary level) and B12 is of the same order
of magnitude as B13 and B23, we may neglect the last term in denominator of (8) and write
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When estimating the order of magnitude we may put: g1 = g2; B12 σ12 = B13 σ13 = B23 σ13. Then
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The main difference between (12) and (14) is the presence in (12) of a large factor
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.
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If h ν13 > k T we obtain
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If at the same time h ν23 > k Tand h ν12 > k T
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In this case the ratio
n2

n1
is approximately defined by Boltzmann’s law. This result was already

obtained by Rosseland.1

The physical meaning of the above is the following: The first two terms in the denominator
of (11) correspond to the forbidden transition from the metastabile state to the normal state. The
last term in the denominator of (11) corresponds to the transitions from the metastabile state to the
higher states. These transitions are stimulated by the corresponding radiation. In the first case the
forbidden transitions are predominant. The forbidden line will appear then in full strength. In the
second case the stimulated transitions to the higher levels are predominant, and if W is sufficiently
large, the relative number of forbitten transitions will be very small and the forbidden line will
disappear. Shortly, in the second case the density of radiation will be large enough to make the
collisions of the metastabile atoms with light–quanta sufficiently frequent.

1S. Rosseland, Astrophysica.
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There may be some doubts as to the possibility of application of our formulae to the gaseous
nebulae because the photo–electric ionization plays in these nebulae a far more important role than
the line excitation. But we may treat the ionized atom as an atom in the energy level with very large
weight g3, and the continuous spectrum behind the head of the principal series of atom as a very
wide spectral line. In fact the quantity B13 determined from the condition that n1 B13 ρ13 is the
number of atoms ionized per second, will be of the same order of magnitude as the B— coefficients
for the first lines of the principal series. We remark that on account of large optical thickness of
nebula in ordinary lines of the principal series the radiation of nucleus in these lines will be absorbed
in the inner layers of the nebula and therefore the first member of (14) vanishes while the second
member remains nearly unchanged since the optical thickness in the continuous spectrum is about
104 times smaller than in the ordinary lines of the principal series. Hence
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when the second level is not a metastabile one.
The author’s observations [1] are in good agreement with this formula. The expression (18) shows

that our assertion that in case I the number of atoms in the metastabile state is
B13 σ13

B12 σ12
times larger,

than in any ordinary excited state must be satisfied more exactly, than expected.

Applications to the gaseous nebulae. We have
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For the first lines of each principal series Aki is of the order 108 sec−1 if the corresponding transition
is not forbidden. Taking gi = gk we obtain for these lines
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As we have mentioned above, the quantity B13 corresponding to the bound–free transitions will be
of this order of magnitude. In the first case it will be

W <
B12

B13
or W <

B12 σ13

108
,

or introducing B12 =
A12

σ12
· g2

g1

W <
A12

108
· σ13

σ12
· g2

g1
= 10−8 g2

g1
·
(

ν13

ν12

)3

.

The quantity
g2

g1
·
(

ν13

ν12

)3

is usually of the order of unity and we find

W < 10−8A12.
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In the planetaries and diffuse nebulae W is of the order 10−14. Hence

τ2 =
1

A12
< 106 sec.,

where τ2 is the mean life–time of the metastabile state.
Thus, if the mean life–time of the metastabile state is shorter than a week, the conditions of

Case I are fulfilled. Only when the mean life–time of the given state is larger than 106 sec. will the
formulae of Case II be applicable. As examples we shall consider the following metastabile levels:
the states 2 S of H, 2 S of H e+, 21 S of parhelium and the state 23 S of orthohelium. The first three
of these are metastabile because the only possible transition of the type

2 S −→ 1 S

is “forbidden” as a transition between two even states. The last state 23 S of orthohelium is metasta-
bile because the only possible transition of the type

23 S −→ 11 S

is forbidden not only as a transition from one even state to another but also as an intercombination
between an orthohelium and a parhelium levels. The metastability of 23 S of He will be therefore of
a higher degree than the metastability of the first three levels.
If we suppose that the mean life–time for the first three types is of the order of 1 sec. or 10 sec. i.e.
of the same order as the mean life–time of the levels corresponding to the “nebulium” radiation the
formulae of Case I will be applicable. The ratio

n2

n1
will be for these states 108 or 109 times larger

than the same ratio for ordinary lines.2

Only for the level 23 S of He may we expect such a long mean life–time that the Case II may occur. A
large proportion of He atom will be then in the state 23 S and in favourable conditions a considerable
optical depth of the nebula in the corresponding series may arise.

Application to the Wolf–Rayet statrs. To determine which of our two cases is realised in the
gaseous shell surrounding a Wolf–Rayet star, the knowledge of W is required. We have no data about
this subject but it seems that W will be scarcely smaller than 10−8, or perhaps larger. We know,
indeed, that during a month after the outburst, the Novae develop many features of the Wolf–Rayet
Spectrum. Taking the velocity of the expansion of the gaseous shell 1000km/sec and the radius of
the star after the ejection of gases 106 km, we obtain for W at the end of month the value 0.5 · 10−7.
For such value of W the formula (16) will be applicable to the levels with mean life–time longer than

2Observations have shown that the number of excited atoms in the ordinary excited states of hydro-
gen is of the order 104 per square centimetre of the nebular disc. The number of hydrogen atoms in
the state 2 S will be therefore 1012 or 1013 per square centimetre and the optical thickness of the
nebula in the first two lines of Balmer series may reach 0.1 or 1.
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10−1 sec. Some of the metastabile states will have longer mean life–time. Such is undoubtedly the
state 23 S of orthohelium. The accumulation of atoms in this state may cause considerable optical
depth in the lines of the principal series of orthohelium. The number of atoms in the state 23 S of
He per square centimetre of the surface of the envelope may be estimated in the following manner.

Not all quanta capable to ionize the normal He–atom emitted by the central star are absorbed
by gaseous envelope, because in the opposite case at the temperatures of the Wolf–Rayet stars the
lines of He would be much stronger than the lines of He+. To explain the observed intensities of
He–lines, let us suppose that about one per cent of the mentioned quanta are absorbed. The optical
thickness of the gaseous envelope for the frequencies lying behind the frequency of ionization of
normal He then will be about 0.01. If the absorption coefficient per each He–atom is of the same
order as the absorption coefficient behind the head of the Lyman series of H, the number of normal
He–atoms per square centimetre will be therefore about 2.1015. Applying the formula (16) we find
that the number of atoms in the state 23 S of He per each square centimetre of the surface of the
envelope will be about 1014. Such number of atoms will produce a considerable optical thickness of
the envelope in the lines of the principal series of orthohelium.

The Collisional Excitation. Now we consider an atom which has only two levels 1 and 2 with the
energies ε1 and ε2. We suppose that the collisions of the second kind may exite some nebular atoms
to the metastabile state. The atom may after that pass into normal state either spontaneously
emitting a quantum of the forbidden line or transmitting the energy of the excitation to a free
electron. All other types of the transitions neglect. Let b12 dt be the probability of an inelastic
collision which excites the normal atom and a21 be the probability of the transition of an excited
atom in the normal state by means of a superelastic collision. The condition of stationarity will have
the form:

b12 n1 − (A21 + a21) n2 = 0. (19)

In the case where the velocity distribution of electrons obeys the Maxwell’s law, we have
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If A21 > a21, i.e. if the density of electrons is low, the ratio
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is smaller than

12



g2
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.

In this case the spontaneous transitions are predominant and the forbidden lines appear in their
full strength. If A21 < a21, the forbidden lines will be weakened or will disapper altogether.
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