
ON THE SCATTERING OF LIGHT BY
PLANETARY ATMOSPHERES

The problem of scattering and absorbtion of light by planetary atmospheres has been the subject
of many theoretical studies. However, because of mathematical difficulties, no satisfactory solution
adequate to the real physical conditions has been found.

It is known that the problem of distribution of brightness on the planetary disc in some approx-
imation is equivalent to the problem of diffuse reflection from a turbid plane–parallel layer of definite
optical thickness. In its turn, the problem of diffuse reflection from a turbid medium requires to
take into account the multiple elementary processes of scattering.

In an earlier paper [1] the author has given an exact solution for the case where the medium
stretches to infinity in both mutually opposite directions and for any scattering indicatrix. At the
same time it became a basis for finding a solution of diffuse reflection problem for a layer which
streches to infinity only in one direction by means of successive approximations.

In the present paper a new and more exact solution is given to the problem by reducing it to
an easily numerically solvable functional equation. One of the advantages of this method is that the
unknown function can be found without intermediate calculation of different functions describing
the radiation field in the inner layers of the medium.

The method is not restricted to the case of spherical indicatrix of scattering. However in order
to simplify the presentation, we treat here the case of the spherical indicatrix only, postponing the
treatment of general case to another occasion. We show that at the same time, the method yields a
solution to the problem of distribution of brightness over the solar disc.

§1. Integral Equation of the Problem

of the Diffuse Reflection

Let us consider plane–parallel layers of matter which is able both to scatter and to absorb
passing radiation. Let this matter fill a halfspace (one sided infinity). Assume that the ratio of the
absorbtion coefficient to the extinction coefficient (the latter is a sum of absorbtion and extinction
coefficients) is a constant to be denoted by λ. We suppose that on the plane bounding the medium
falls radiation under angle θ0 to the normal.Let the density of radiation flow (the energy passing
through unit area perpendicular to the flow) be πS.

The integral equation of the theory of scattering in the case of spherical indicatrix is known to
have the form

B(τ ) =
λ

4
S exp (−τ sec θ0) +

λ

2

∫ ∞

0

Ei |τ − t|B(t) dt, (1)
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where B(τ ) = η /α is the ratio coefficient of radiation / extinction coefficient and τ is the optical
depth. If the solution of (1) is known, the intensity of light diffusely reflected in the direction making
an angle θ with the normal can be found from the formula

I(θ1) =
∫ ∞

0

exp (−τ sec θ0)B(τ ) sec θ1 dτ. (2)

The usual method consists in finding a solution of (1) and substituting B(τ ) into (2). In this way
one can find the intensity I as a function of the angles of incidence θ0 and reflection θ1. From the
linearity of the problem it is clear that both B(τ ) and I will be proportional to S. Let us denote

I

S
= r(θ1, θ0).

This quantity will depend on θ1 and θ0 but not on S.
The problem of diffuse reflection requires to find the function r(θ1, θ0). Bellow we derive an

equation directly for r(θ1, θ0) and find its solution.

§2. The functional equation, determining

the function r(θ1, θ0)

Let us set in (1) ξ = sec θ0 and τ = σ + a, t = s+ a:

B(σ + a) =
λ

4
exp (−ξ(σ + a)) +

λ

2

∫ ∞

−a

Ei |σ − s|B(s + a) ds, (3)

and take for a moment S = 1. Differentiating this equation by a we have

B′(σ + a, ξ) − λ

2

∫ ∞

−a

Ei |σ − s|B′(s+ a, ξ) ds =

= −λ
4

exp (−ξ(σ + a)) +
λ

2
Ei(σ + a)B(0, ξ),

where we show explicitly the dependence of B from the parameter ξ = sec θ0. Putting a = 0 we
obtain

B′(σ, ξ) − λ

2

∫ ∞

0

Ei |σ − s|B′(s, ξ) ds = −λ
4

exp (−ξσ) +
λ

2
Ei(σ)B(0, ξ). (4)

But
Ei(σ) =

∫ ∞

1

exp (−σξ) dζ
ζ
,

and we conclude that the right hand side of (4) is a superposition of terms of the type exp (−σξ).
The same is true for the right hand side of (1). Owing to the linearity, we can write the solution of
(4) as a superposition of solutions of the equations of type (1):

B′(σ, ξ) = −ξB(σ, ξ) + 2B(0, ξ)
∫ ∞

1

B(σ, ζ)
dζ

ζ
. (5)
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Multiplying (5) by exp (−ησ) and integrating over σ, we find
∫ ∞

0

exp (−ησ)B′(σ, ξ) dσ = −ξ
∫ ∞

0

exp (−ησ)B(σ, ξ) dσ+

+ 2B(0, ξ)
∫ ∞

1

dζ

ζ

∫ ∞

0

B(σ, ζ) exp (−ησ) dσ.
(6)

Integrating in the left hand side we can exclude the derivative of B

η

∫ ∞

0

exp (−ησ)B(σ, ξ) dσ − B(0, ξ) = −ξ
∫ ∞

0

exp (−ησ)B(σ, ξ) dσ+

+ 2B(0, ξ)
∫ ∞

1

dζ

ζ

∫ ∞

0

B(σ, ζ) exp (−ησ) dσ.
(7)

However
η

∫ ∞

0

exp (−ησ)B(σ, ξ) dσ = I(η) = r(η, ξ),

since we have adopted S = 1.
Therefore the equation (7) can be rewritten in the form

ξ + η

η
r(η, ξ) = B(0, ξ)

[
1 +

2
η

∫ ∞

1

r(η, ζ)
dζ

ζ

]
.

For the function
R(η, ξ) =

r(η, ξ)
η

we now find

(ξ + η)R(η, ξ) = B(0, ξ)
[
1 + 2

∫ ∞

1

R(η, ξ)
dζ

ζ

]
. (8)

On the other hand from (1) we have, for τ = 0

B(0, ξ) =
λ

4

[
1 + 2

∫ ∞

0

Ei(t)B(t, ξ) dt
]
,

or using the integral expression of Ei(t)

B(0, ξ) =
λ

4

[
1 +

2
ξ

∫ ∞

1

r(ξ, ζ)
dζ

ζ

]
. (9)

Taking into account that r(ξ, ζ) = ξR(ξ, ζ) we obtain

B(0, ξ) =
λ

4

[
1 + 2

∫ ∞

1

R(ξ, ζ)
dζ

ζ

]
. (9a)

Substituting (9a) in (8) we find

(ξ + η)R(η, ξ) =
4
λ
B(0, ξ) B(0, η),
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r(η, ξ) =
4
λ

η

η + ξ
B(0, ξ) B(0, η). (10)

Thus we conclude that in the case of spherical indicatrix of scattering the function r(η, ξ) of diffuse
reflection is represented by product of two identical functions each of which depends on one variable,
multiplied by the ratio

η

η + ξ
. We recall in this connection that Minnaert [2] has recently noted that

the ratio
r(η, ξ)
η

is always a symmetrical function of η and ξ independently of the form of scattering

indicatrix.
In a paper of V. A. Fock (now in press [3]) where the exact solution of (1) was received, it was

shown that the ratio
η + ξ

η
r(η, ξ) is a product of some function of η and of the same function of ξ,

and this function was expressed as an integral depending on a parameter. Our aim now is to find a
functional equation for B(0, ξ).

SUbstituting (10) into right hand side of (9a) we find

B(0, ξ) =
λ

4

[
1 +

8
λ
B(0, ξ)

∫ ∞

1

B(0, ζ)
ξ + ζ

dζ

ζ

]
.

Instead of ξ = sec θ0 we consider x = 1 /ξ = cos θ0 to be an argument and denote

2√
λ
B(0, ξ) =

2√
λ
B

(
0,

1
x

)
= ϕ(x). (11)

Then we find a functional equation for ϕ(x)

ϕ(x) =
√
λ

2

[
1 + 2ϕ(x)x

∫ 1

0

ϕ(x)
x+ z

dz

]
. (12)

Now we can represent r(η, ξ) as a function of y and x

r(y, x) =
x

x+ y
ϕ(x)ϕ(y). (13)

Thus the solution of the functional equation (12) will give us immediately the function r(y, x) of
diffuse reflection. In the next paragraph we present this solution for different values of λ.

The advantage of this approach is that in this way we avoid consideration of the functions which
describe the radiation field inside the medium.

Of course the proposed method of reduction of the integral equation (1) to a functional equation
by means of Laplace transformation can be extended to other integral equations which have kernels
depending only on difference τ − t.

§3. Solution of the functional equation for ϕ(x)

Instead of ϕ(x) we consider a function

ψ(x) =
2√
λ
ϕ(x) (14)
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which obviously satisfies the equation

ψ(x) = 1 +
λ

2
xψ(x)

∫ 1

0

ψ(z)
x+ z

dz. (15)

For λ < 1 the numerical solution of this equation can be by successive approximation. We begin
by taking in the right side of (15) the approximation of the zero order ψ0(x) = 1. As the first
approximation we obtain

ψ1(x) = 1 +
λ

2
x ln

1 + x

x

The values of the function ϕ(x) =
√

λ
2 ψ(x) for different λ are given in the following table.

λ\x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.519 0.360 0.387 0.403 0.415 0.424 0.431 0.438 0.443 0.448 0.452 0.455

0.612 0.391 0.428 0.449 0.466 0.479 0.490 0.500 0.508 0.516 0.522 0.528

0.728 0.426 0.477 0.508 0.532 0.552 0.570 0.585 0.598 0.609 0.620 0.629

0.806 0.449 0.512 0.553 0.586 0.613 0.637 0.658 0.677 0.694 0.708 0.722

0.865 0.465 0.540 0.590 0.631 0.666 0.697 0.724 0.749 0.771 0.790 0.809

0.910 0.477 0.563 0.621 0.672 0.715 0.754 0.789 0.821 0.851 0.878 0.903

0.944 0.486 0.580 0.647 0.706 0.759 0.805 0.850 0.889 0.926 0.962 0.993

0.969 0.492 0.594 0.669 0.736 0.798 0.852 0.906 0.955 1.001 1.045 1.086

0.986 0.497 0.607 0.691 0.767 0.837 0.903 0.967 1.026 1.081 1.137 1.188

0.997 0.499 0.617 0.710 0.797 0.878 0.958 1.083 1.108 1.179 1.250 1.319

1.000 0.500 0.624 0.725 0.821 0.915 1.007 1.097 1.188 1.276 1.365 1.455

Table 1. Value of ϕ(x) =
√
λ

2
ψ(x) for different λ.
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All our numerical integrations have been carried out using Simpson formula.
Actually the process of successive approximation will converge much more rapidly if we begin not
with ψ0(x) = 1 but rather with a function which is more or less near to the exact solution.

For example from (15) it is clear that ψ(0) = 1. This suggests taking for ψ0(x) a linear function

ψ0(x) = 1 + ax,

where the constant a can be determined from the condition that the integral of ψ0(x) over the whole
interval is equal to the same integral of the exact solution ψ(x), i.e.

1 +
a

2
=

∫ 1

0

ψ(x) dx. (16)

But we are able to find the exact value of integral on the right hand side of (16) in the following
way. Let us integrate both sides of (15)

∫ 1

0

ψ(x) dx = 1 +
λ

2

∫ 1

0

∫ 1

0

ψ(x)ψ(z) z dz dx
x+ z

.

Taking into account that the integral on the right hand side is equal

1
2

∫ 1

0

∫ 1

0

ψ(x)ψ(z) dz dx =
1
2

[∫ 1

0

ψ(x) dx
]2

,

we obtain a quadratic equation which yields

∫ 1

0

ψ(x) dx =
2
λ

(
1 −

√
1 − λ

)
. (17)

With the same aim of improving the initial approximation we can use the processes of interpolation
and extrapolation as soon as approximate solutions for two different values of λ are calculated. With
moderate effort it is possible to find such a ψ0(z) that ψ1 differs from ψ0 not more than in two or
three units of the third decimal.

In the case λ > 0.95 it is better to modify the process in the following way. Under the sign of
integral in (15) let us substitute

x

x+ z
= 1 − z

x+ z
.

Then

ψ(x) = 1 +
λ

2
ψ(x)

∫ 1

0

ψ(z) dz − λ

2
ψ(x)

∫ 1

0

ψ(z) z dz
x+ z

,
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or using (17)

√
1 − λ ψ(x) = 1 − λ

2
ψ(x)

∫ 1

0

ψ(z) z dz
x+ z

,

from which

ψ(x) =
[√

1 − λ+
λ

2

∫ 1

0

ψ(z) z dz
x+ z

]−1

. (18)

Now putting in the right hand side ψ(z) = ψ0(z) we calculate ψ1(z). Then in the right hand side

of (18) we put ψ(z) =
1
2

[ψ0(z) + ψ1(z)] and obtain some function ψ2(z). Then we again form the
mean etc.. When λ > 0.95 the process is rapidly converging.

Let us note that at λ = 1 the equation (18) turns into

ψ(x)
∫ 1

0

ψ(z) z dz
x+ z

= 2,

or

2
x

∫ 1

0

r(z, x) z dz = 1.

Multiplying both sides by π Sx we find that this equation represents the condition of equality of
incident and reflected flows, i.e. that for λ = 1 the albedo for every angle of incidence equals to 1.

§4. The Distribution of Brightness over

the planetary disk

The results obtained enable to determine the distribution of brightness over the disk in different
phases. The most simple result we have for the case where the planet is in opposition. In such case
θ1 = θ0 and y = x. Therefore we obtain

r(y, x) =
1
2

[ϕ(x)]2 , (13′)

where x is the cosin of angular distance from the centre of the disk.
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λ\x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.519 0.065 0.075 0.081 0.086 0.090 0.093 0.096 0.098 0.100 0.102 0.104

0.612 0.076 0.092 0.101 0.108 0.114 0.120 0.125 0.129 0.133 0.137 0.140

0.728 0.091 0.112 0.129 0.141 0.152 0.162 0.171 0.179 0.186 0.192 0.198

0.806 0.101 0.131 0.153 0.172 0.188 0.203 0.216 0.229 0.241 0.251 0.261

0.865 0.108 0.146 0.174 0.199 0.222 0.243 0.262 0.280 0.297 0.312 0.327

0.910 0.114 0.158 0.193 0.226 0.256 0.284 0.311 0.337 0.362 0.385 0.408

0.944 0.118 0.168 0.209 0.249 0.288 0.324 0.361 0.395 0.429 0.463 0.493

0.969 0.121 0.176 0.224 0.271 0.318 0.363 0.410 0.456 0.501 0.546 0.590

0.986 0.124 0.184 0.239 0.294 0.350 0.408 0.468 0.526 0.584 0.646 0.706

0.997 0.125 0.190 0.252 0.318 0.385 0.459 0.534 0.614 0.695 0.781 0.870

1.000 0.125 0.195 0.263 0.337 0.419 0.507 0.602 0.705 0.814 0.931 1.058

Table 2. The theoretical distribution of brightness over the planetary disk

in the case of opposition of the planet for different λ, according to (13′).

For the intensity we have

I =
1
2

[ϕ(x)]2 S. (19)

Consider an absolutely white surface which scatters light according to Lambert law, situated at the
distance of the planet from the Sun, perpendicular to solar radiation (we use the language of visual

photometry). It is evident that
1
2

[ϕ(x)]2 is the ratio of brightness at the point x of the planetary
disk to the brightness S of such white surface.

The maximal contrast i.e. the maximal ratio of brightness at the centre to that at the edge of
the disk, we have at λ = 1 (the case of pure scattering). When λ tends to zero the planetary disk is
becoming homogeneously bright.

Comparing our results with observations it is important to keep in mind that they are applicable
only to gaseous envelopes of great optical thickness such as the atmospheres of Jupiter, Saturn and
Venus. One should also not forget that we have supposed that scattering indicatrix is spherical. At
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the same time we supposed that in all regions of atmosphere the optical properties are identical i.e.
we neglected possible presence of local details.

It is quite possible and even probable that the scattering indicatrix is not spherical. The
theoretical calculations for non spherical indicatrixes we will give in another paper. With all these
reservations, we still have made comparison with observations in the case of Jupiter, using the
absolute measurements of brightness published by V. V. Sharonov [4].

Of the greatest importance are comparisons with the absolute values, since otherwise it is always
possible to find some λ for which the theoretical ratio centre / edge has the observed value, if only
this ratio is between 1.0 and 8.0. Comparison with absolute measurements has the advantage, that
from the observed brightness at the centre of the disk (x = 1.0) one can determine λ and then find
the contrast. This is a more severe test for the theory. For this reason we have taken the observations
of Sharonov. Since for the centre of the disk the observations give r = 0.590, we concluded that for

the atmosphere of Jupiter is λ = 0.969. It was found that by λ = 0.969 the theoretical curve
1
2
ϕ2

represents sufficiently well the distribution of brightness along the equatorial diameter. Only on the
edge the discrepancy is larger than 11%. Since the precision of measurements drops at the edges,
we can consider the accordance as sufficiently good.

§5. The theoretical albedo

The auxiliary functions we have introduced allow to determine the theoretical value of the
albedo i.e. the ratio of the flux reflected by the atmosphere to the incident flux. Generally this
theoretical albedo depends on the angle between the incident flux and the direction normal to the
layer.

For the flux scattered from the unit surface of the scattering layer we have

H =
∫
I cos θ1 dω1 = S

∫
r(θ1, θ0) cos θ1 dω1,

where dω1 is an element of solid angle. For the flux of the incident radiation we have

F = π S cos θ0

For the albedo we find:
A =

H

F
=

2
cos θ0

∫
r(θ1, θ0) cos θ1 sin θ1 dθ1,

and since
r(θ1, θ0) = R(θ1, θ0) sec θ1,

we conclude that
A =

2
cos θ0

∫
R(θ1, θ0) sin θ1 dθ1,

or

A =
2
y

∫ 1

0

xyϕ(x)ϕ(y)
x+ y

dx,
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or

A = 2ϕ(y)
∫ 1

0

ϕ(x) dx− 2ϕ(y)
∫ 1

0

yϕ(x) dx
x+ y

.

By means of (12), (14) and (17) we transform this equation to

A = 1 − 2

√
1
λ
− 1ϕ(y). (20)

This is the final expression for albedo. The Table 3 contains the values computed according to (20)
for A dependent on y and λ. We see that for the skew rays the albedo is smaller than in the case
where the incident flow is normal. This difference is stronger in the case of smaller λ, i.e. for the
media with smaller albedo.

λ\x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.519 0.307 0.255 0.224 0.201 0.183 0.170 0.156 0.146 0.137 0.130 0.124

0.612 0.376 0.318 0.274 0.257 0.236 0.218 0.201 0.190 0.177 0.168 0.158

0.728 0.478 0.414 0.378 0.348 0.324 0.302 0.284 0.257 0.254 0.240 0.230

0.806 0.560 0.498 0.458 0.426 0.399 0.376 0.355 0.336 0.320 0.306 0.292

0.865 0.633 0.573 0.535 0.502 0.474 0.450 0.428 0.408 0.391 0.376 0.361

0.910 0.700 0.646 0.610 0.573 0.551 0.526 0.505 0.484 0.466 0.448 0.433

0.944 0.763 0.717 0.685 0.656 0.680 0.608 0.586 0.567 0.549 0.531 0.516

0.969 0.825 0.788 0.762 0.738 0.716 0.697 0.677 0.660 0.644 0.628 0.614

0.986 0.883 0.857 0.837 0.819 0.802 0.787 0.772 0.758 0.745 0.732 0.720

0.997 0.949 0.936 0.926 0.917 0.909 0.900 0.893 0.885 0.877 0.870 0.863

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 3. Values of A = 1 − 2

√
1
λ
− 1ϕ(y) for different λ.
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§6. The distribution of the brightness

over the solar disk and similar problems

Let us again consider a plane–parallel absorbing and scattering layer. Suppose that the layer
has a finite optical thickness and that the sources of radiation lie behind the layer. In this situation
we have some flux of radiation which has penetrated through the layer after scatterings. Let us
increase the optical thickness of the layer, maintaning everywhere its optical parameters, including
the constant ratio of the scattering coefficient to the absorbtion coefficient . At the same time let
us increase the radiation power of illuminating sources behind the layer in such proportion that the
flux of penetrated radiation remains constant. In the limit we will have a half-space medium and
sources situated infinitely deep. Posing in this way the problem of radiation field, we come to the
famous integral equation

B(τ ) =
λ

2

∫ ∞

0

Ei|τ − t|B(t) dt. (21)

In particular, for λ = 1 we obtain an infinite purely scattering layer and the mathematical problem
of E. Milne. Thus our problem for λ = 1 is equivalent to the problem of radiactive equilibrium of the
photosphere, though the physical picture can be quite different. Therfore the angular dependence
obtained from (21) yields simultaneously the distribution of brightness over the solar disk.

The intensity of the photospheric radiation in a given direction is determined by the equation

r(η) =
∫ ∞

0

exp (−ηt) ηB(t) dt, (22)

where η is the secans of the angle between the direction of radiation and the normal to layers. Now
r(η) may be expressed through the function ϕ, which was introduced above.

For the derivative B′(τ ) we obtain from (21):

B′(τ ) =
λ

2

∫ ∞

0

Ei|τ − t|B′(t) dt =
λ

2
Ei(τ )B(0). (23)

Since
Ei(τ ) =

∫ ∞

1

exp (−τζ) dζ
ζ
,

we can obtain the solution of (23) as a superposition of solutions of the equations of type (23). This
leads to

B′(τ ) = 2B(0)
∫ ∞

1

B(τ, ζ)
dζ

ζ
+ µB(τ ), (25)

where µ is a constant, which must be chosen in a way to reduce the right hand side of (25) to B(τ ).
Multiplying both sides of (25) by exp (−τη) and integrating we find

∫ ∞

0

exp (−ητ )B′(τ ) dτ = 2
B(0)
η

∫ ∞

1

r(η, ζ)
dζ

ζ
+
µ

η
r(η),
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where r(η, ζ) is the function introduced in earlier paragraphs. Integrating by parts in the left hand
side of this equation we find

η

∫ ∞

0

exp (−ητ )B(τ ) dτ = B(0)
[
1 +

2
η

∫ ∞

1

r(η, ζ)
dζ

ζ

]
+
µ

η
r(η),

or

r(η)
(

1 − µ

η

)
= B(0)

[
1 + 2

∫ ∞

1

R(η, ζ)
dζ

ζ

]
. (26)

Substituting here instead of R(η, ζ) its expression, and writing y instead of η−1 and z instead of ζ−1

we obtain

r(y) =
B(0)

1 − µy

[
1 + 2yϕ(y)

∫ 1

0

ϕ(z) dz
z + y

]
, (27)

with ϕ(z) as defined in §2 ( see also the Table 2). Taking into account (12) we can rewrite (27) in
the form

r(y) =
2√
λ

B(0)ϕ(y)
1 − µy

. (28)

We see that the intensity of radiation which leaves the medium under the angle arccosϕ(y) is
proportional to

ϕ(y)
1 − µy

.

Let us now determine the parameter µ. From the equation (21) we have

B(0) =
λ

2

∫ ∞

0

Eit B(t) dt,

or

B(0) =
λ

2

∫ 1

0

dζ

ζ

∫ ∞

0

exp (−tζ)B(t) dt =
λ

2

∫ ∞

1

r(ζ)
ζ2

dζ =
λ

2

∫ 1

0

r(y) dy.

Taking for r(y) the expression (28) we find an equation from which µ can be determined as a function
of λ.

√
λ

∫ 1

0

ϕ(y) dy
1− µy

= 1. (29)

Let us now show that µ is the solution of

λ =
2µ

ln 1+µ
1−µ

. (30)

To prove this we consider the bounded solution of the equation

λ

2

∫ ∞

1

exp (−τξ) dξ

ξξ − µ)
= C(τ ) − λ

2

∫ ∞

0

Ei|τ − t, C(t) dt, (31)
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where µ > 0 satisfies (30). The bounded solution of (31) can be expressed as superposition of
solutions of (3). Hence

C(τ ) = 2
∫ ∞

1

B(τ, ξ) dξ
ξ(ξ − µ)

. (32)

Multiplying this equation by exp (−ητ ) and integrating we find
∫ ∞

0

C(τ ) exp (−ητ ) dτ = 2
∫ ∞

1

R(η, ξ) dξ
ξ(ξ − µ)

. (33)

On the other hand we can write explicitly the only bounded solution of (31) which is

C(τ ) = exp (−µτ ). (34)

Therefore we rewrite (33) in the form

1
µ + η

= 2
∫ ∞

1

ϕ(y)ϕ(ξ) dξ
ξ(ξ + η)(ξ − µ)

.

Substituting again η−1 = y and ξ−1 = x we find

1
1 + µy

= 2ϕ(y)
∫ 1

0

xϕ(x) dx
(x+ y)(1 − µx)

, (35)

or integrating both sides of (35)

1
µ

ln(1 + µ) = 2
∫ 1

0

xϕ(x) dx
1 − µx

∫ 1

0

ϕ(y) dy
x+ y

.

By virtue of the functional equation (12)

1
µ

ln(1 + µ) =
∫ 1

0

2√
λ
ϕ(x) − 1

1 − µx
dx.

This yields
1
µ

ln
1 + µ

1 − µ
=

2
λ

∫ 1

0

ϕ(x) dx
1 − µx

,

or on the basis of (30)
√
λ =

∫ 1

0

ϕ(x) dx
1 − µx

.

This means that the root of the equation (29) actually is the quantity µ determined by (25). In
the special case of λ = 1, taking into account (28) we have

r(y) = Aϕ(y),

where A is a constant. Since the mathematical problem of distribution of brightness over solar disk
is equivalent to the problem considered in this paragraph we can conclude that ϕ(y) is the function
representing the distribution of brightness over the solar disk for λ = 1.
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§7. Conclusions

Our method of reduction of an integral equation to a fuunctional equation is applicable not
only to the equation of scattering theory but also to more general equations with kernels depending
on the difference of variables. The whole argumentation remains the same.

In another paper we intend to apply our method to the case of nonspherical indicatrix of
scattering.
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